Números Inteiros e Criptografia, PLE 2020

Lista de Exercícios 6

Submeta as soluções das questões marcadas com * até 9 de outubro às 18:00 salvando um arquivo na sua pasta no Google Drive[†]

Justifique todas as questões.

*Questão 1. Considere as seguintes funções definidas para n natural:

- $\omega(n) =$ número de fatores primos de n distintos.
- $\Omega(n) = \text{número de fatores primos de } n \text{ contando todas as repetições!}$
- d(n) = número de divisores positivos de n
- S(n) = soma dos divisores positivos de n
- $h(n) = n^{123456789}$
- $j(n) = 123456789 \cdot n$

Exemplos de valores das funções ω , Ω , d, S estão dados na tabela abaixo:

n	fatoração em primos	$\omega(n)$	$\Omega(n)$	divisores	d(n)	S(n)
1	_	0	0	1	1	1
2	2	1	1	1, 2	2	3
3	3	1	1	1, 3	2	4
4	2^2	1	2	1, 2, 4	3	7
8	2^3	1	3	1, 2, 4, 8	4	15
15	$3 \cdot 5$	2	2	1, 3, 5, 15	4	24
120	$2^3 \cdot 3 \cdot 5$	3	5	1, 2, 3, 4, 5, 6, 8, 10, 12,	16	360
				15, 20, 24, 30, 40, 60, 120		

Dizemos que uma função $f: \mathbb{N} \to \mathbb{N}$ é:

• aditiva se, para todos $n, m \in \mathbb{N} \setminus \{0\}$:

se
$$mdc(n, m) = 1$$
 então $f(n \cdot m) = f(n) + f(m)$.

• completamente aditiva se, para todos $n, m \in \mathbb{N} \setminus \{0\}$:

$$f(n \cdot m) = f(n) + f(m).$$

 $^{^\}dagger$ Link recebido por email em 1/9/2020 ou 17/9/2020. A pasta tem um nome similar a Cripto - Submissões e Feedback - <seu nome>; em caso de qualquer dúvida entre em contato com os professores.

• multiplicativa se, para todos $n, m \in \mathbb{N} \setminus \{0\}$:

se
$$mdc(n, m) = 1$$
 então $f(n \cdot m) = f(n) \cdot f(m)$.

• completamente multiplicativa se, para todos $n, m \in \mathbb{N} \setminus \{0\}$:

$$f(n \cdot m) = f(n) \cdot f(m).$$

Para cada uma das funções ω , Ω , d, S, h e j definidas acima, e para cada uma das propriedades aditiva, completamente aditiva, multiplicativa e completamente multiplicativa, diga se a função tem a propriedade ou não, provando cada caso positivo e dando um contra-exemplo para cada caso negativo. (Dica: poupe um pouco do seu trabalho notando que uma função ser completamente aditiva já implica que ela seja aditiva [qual a contrapositiva dessa implicação?], e analogamente para completamente multiplicativa e multiplicativa.)

Questão 2 (Infinitude dos primos). Em sala, definimos a função primorial que, para um dado primo p, é definida por

$$p^{\#} = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdots p$$
 = o produto de todos os primos menores ou iguais a p.

Também em sala, provamos que todos os fatores primos de $p^{\#} + 1$ são estritamente maiores do que p.

Agora vamos estender a função primorial para todos os naturais, fazendo:

$$\begin{cases} n^{\#}=1, & \text{se } n<2\\ n^{\#}=\text{o produto de todos os primos de 2 até } n, & \text{se } n\geq2 \end{cases}$$

- * a. Prove que, para todos naturais n e p, se p é primo e $p \leq n$, então p não divide $n^{\#}+1$.
- * b. Use o item anterior para provar a infinitude dos primos na seguinte forma:

para todo natural n, existe um primo p > n.

Questão 3. Considere as oito funções abaixo. Em cada uma, as entradas e

saídas são sempre número naturais.

$$\begin{cases} f_1(n,0) = n \\ f_1(n,m) = f_1(n,m-1) + 1, & \text{se } m > 0 \end{cases}$$

$$\begin{cases} f_2(n,0) = 0 \\ f_2(n,m) = f_2(n,m-1) + n, & \text{se } m > 0 \end{cases}$$

$$\begin{cases} f_3(0,m) = 0 \\ f_3(n,m) = f_3(n-1,m) + 1, & \text{se } n > 0 \end{cases}$$

$$\begin{cases} f_4(n,0) = 1 \\ f_4(n,m) = f_4(n,m-1) \cdot n, & \text{se } m > 0 \end{cases}$$

$$\begin{cases} f_5(n,m) = 0, & \text{se } m \leq 1 \\ f_5(n,m) = 1, & \text{se } m > 1 \& m \text{ divide } n \& \forall k \in \mathbb{N}(k < m \to f_5(n,k) = 0) \\ f_5(n,m) = 0, & \text{nos outros casos} \end{cases}$$

$$\begin{cases} f_6(n,m) = 0 & \text{se } m < n \\ f_6(n,m) = f_6(n,m-n) + 1, & \text{nos outros casos} \end{cases}$$

$$\begin{cases} f_7(n,m) = 0, & \text{se } 7 \text{ não divide } n \text{ ou } 7 \text{ não divide } m \\ f_7(n,m) = f_7(n/7,m/7) + 1, & \text{nos outros casos} \end{cases}$$

$$\begin{cases} f_8(n,0) = 1 \\ f_8(n,m) = n^{f_8(n,m-1)}, & \text{se } m > 0 \end{cases}$$

a. Determine os valores abaixo, exibindo as contas ao longo do caminho até determinar a resposta:

- (i) $f_1(5,4)$
- (ii) $f_2(5,4)$
- (iii) $f_3(5,24)$
- (iv) $f_4(4,4)$
- (v) $f_5(35,5)$
- (vi) $f_5(35,7)$
- (vii) $f_6(4,30)$
- (viii) $f_7(28,70)$
- (ix) $f_8(2,4)$

* b. Para cada uma das sete funções g_i abaixo, definidas sem uso de recursão, encontre alguma das funções f_j acima tal que $g_i = f_j$. (Novamente, as entradas e saídas das funções g_i são sempre números naturais.) Você não precisa provar formalmente que $g_i = f_j$, mas deve dar um argumento informal e intuitivo para justificar por que $g_i = f_j$ é verdade.

```
\begin{split} g_1(n,m) &= \text{o expoente de 7 na fatoração por primos de } \operatorname{mdc}(n,m) \\ g_2(n,m) &= n \\ g_3(n,m) &= n*m \\ g_4(n,m) &= \begin{cases} 1, & \text{se } m \text{ \'e o menor n\'umero maior do que 1 que divide } n \\ 0, & \text{caso contr\'ario} \end{cases} \\ g_5(n,m) &= \text{o quociente da divisão inteira de } m \text{ por } n \\ g_6(n,m) &= n+m \\ g_7(n,m) &= n^m \end{split}
```