Matemática Discreta 2024.1

Hugo Nobrega

Lista de Exercícios 4

Entregue todas as questões marcadas com * até 15 de julho às 20:00

Em todas as questões, você sempre pode usar tudo que foi feito em sala ou de alguma lista de exercícios, mesmo a atual (e mesmo questões que você não tenha resolvido), mas deve citar claramente o que está usando.

Ao longo de toda essa lista de exercícios, grafos são *simples* (nenhum vértice é vizinho de si mesmo, e entre qualquer par de vértices há no máximo 1 aresta) e *colorações* são sempre de vértices.

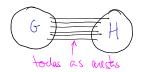
Questão 1. Encontre o maior inteiro positivo x para o qual a seguinte frase é um teorema (e prove isso).

"Se G é um grafo conexo qualquer, então para quaisquer x arestas de G existe uma árvore geradora de G que as contém."

Questão 2. Dados grafos G e H, sua união disjunta é o grafo obtido pelo seguinte procedimento:

- primeiro, renomeie os vértices de H para que nenhum esteja também em G;
- agora, construa um grafo cujos vértices são os de G e os da nova versão de H, e adicione ao novo grafo apenas arestas de G e as de H (ou seja: não ligue vértices de G que já não estivessem ligados, idem para H, e não ligue nenhum vértice de G com nenhum de H)

A junção de G e H é o grafo obtido da união disjunta de G e H adicionando todas as arestas entre vértices de G e H.

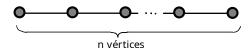


Definição 1. O conceito de *cografo* é agora definido recursivamente pelas seguintes regras:

- B) O grafo com 1 vértice é um cografo;
- R1) Se G e H são cografos, então sua união disjunta também é;
- R2) Se G e H são cografos, sua junção também é.

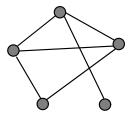
a.

Definição 2. Dado $n \ge 1$, denotamos por P_n o grafo caminho com n vértices (e portanto n-1 arestas):



Dê uma definição recursiva para esses grafos.

- * b. Prove que P_3 é um cografo.
- * c. Prove que se $k \ge 4$ então nenhum cografo tem P_k como subgrafo induzido¹.
- * d. Prove que o grafo abaixo não é um cografo.



Questão 3. Um grafo completo é um grafo que tem todas as arestas que poderia ter. Assim, para cada $n \ge 1$, há exatamente 1 grafo completo com n vértices, denotado K_n .

a. Prove que K_n tem $\binom{n}{2}$ arestas.

¹Lembrete: um *subgrafo induzido* de um grafo G é qualquer grafo que pode ser obtido de G apagando apenas vértices (e, claro, as arestas dos vértices apagados)

- **b.** Prove que para todos naturais $a, b \ge 1$ temos que K_{a+b} é a junção (vide Questão 2 acima) de K_a e K_b .
- * c. Usando os itens acima, prove que para todos naturais $a,b\geqslant 1$ temos

$$\binom{a+b}{2} = \binom{a}{2} + ab + \binom{b}{2}$$

Questão 4. Seja d um número natural.

Considere os grafos que podem ser obtidos de acordo com o seguinte procedimento recursivo " Proc_d ":

- Base: grafo com apenas 1 vértice
- \bullet Recursivo: dado G já construído, adicionar um novo vértice com no máximo d arestas para os vértices de G
- a. Dê exemplo de um grafo que $n\tilde{a}o~possa$ ser construído por Proc_d para d=3.
- * b. Prove que todo grafo que pode ser construído por Proc_d pode ser colorido com no máximo d+1 cores.
- **c.** Prove que se um grafo G tem a propriedade "em todo subgrafo de G há pelo menos um vértice com grau no máximo d", então G pode ser colorido com no máximo d+1 cores.

Questão 5. Dado um grafo G com vértices $\{v_0, v_1, \ldots, v_{n-1}\}$, a sua sequência de graus é a reordenação da sequência $d(v_0), d(v_1), \ldots, d(v_{n-1})$ em ordem não-decrescente (i.e., cada número é menor ou igual ao próximo na sequência).

Por exemplo, a sequência de graus do grafo da Questão 2(d) é $1,\,2,\,3,\,3,\,3.$

- a. Quais são os grafos que têm como sequência de graus 1, 1, 2, 2, 2, 2?
- **b.** Dado $n \ge 1$, quais são os grafos que têm como sequência de graus exatamente a sequência de comprimento n com todos os elementos iguais a 0?
- * c. Dado $n \ge 1$, quais são os grafos que têm como sequência de graus exatamente a sequência de comprimento n com todos os elementos iguais a 1? Lembre-se de que estamos falando apenas de grafos simples.
- * d. Dado $n \ge 1$, quais são os grafos que têm como sequência de graus exatamente a sequência de comprimento n com todos os elementos iguais a 2? Lembre-se de que estamos falando apenas de grafos simples.

Questão 6. Dado um grafo G, chamamos de seu *complementar* o grafo \overline{G} que tem exatamente os mesmos vértices de G, e que tem como arestas exatamente as que $n\tilde{a}o$ est $\tilde{a}o$ em G.

a. Dê dois exemplos de grafos *autocomplementares*, i.e., grafos para os quais G e \bar{G} são na verdade o mesmo grafo².

b. Prove que para qualquer grafo G temos que G ou \bar{G} é conexo, e que esse "ou" não é necessariamente exclusivo.

Questão 7. Seja G um grafo e seja C um ciclo de tamanho pelo menos 4 em G. Uma aresta de G que ligue dois vértices não consecutivos de C é chamada de uma corda de C.

* a. Prove que todo grafo onde todo vértice tenha grau pelo menos 3 contém um ciclo com corda. (*Dica*: tente fazer um argumento parecido com o que usamos para provar que toda árvore com vértice de grau d tem pelo menos d vértices de grau 1.)

b. Um grafo é chamado *cordal* se todos os seus ciclos de tamanho pelo menos 4 possuem pelo menos uma corda.

Prove que todos os grafos que podem ser construídos pelo seguinte procedimento recursivo são cordais:

- Base: grafo com 1 vértice
- Recursivo: dado G já construído, adicionar um novo vértice e torná-lo vizinho de um subconjunto qualquer de vértices de G, desde que esses vértices de G já fossem todos vizinhos uns dos outros.

Questão 8. Vamos chamar uma tabela de números (i.e., uma matriz) de boa se:

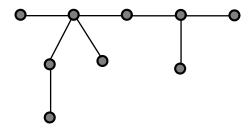
- ela tem 2 linhas e n-1 colunas;
- a primeira linha tem exatamente os números $0, 1, 2, \ldots, n-2$, nessa ordem;
- cada coluna tem dois números distintos;
- a segunda linha tem apenas elementos do conjunto $\{0, 1, 2, ..., n-1\}$, permitindo repetições.

Dada uma tabela boa, monte um grafo G com vértices $\{0, 1, 2, \ldots, n-1\}$, e com as arestas dadas pelas colunas da tabela: ligamos o vértice x ao vértice y sse há pelo menos uma coluna na tabela com x em uma das linhas e y na outra.

²"o mesmo grafo" aqui quer dizer que podemos apenas trocar os nomes dos vértices de um dos grafos de forma a obter exatamente o outro.

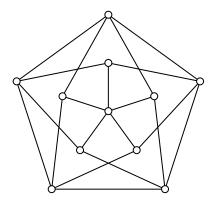
a. Prove que (dependendo da tabela boa) é possível que G seja conexo e também é possível que G seja desconexo.

b. Prove que o seguinte grafo, onde os rótulos dos vértices foram apagados, pode ser obtido a partir de alguma tabela boa:

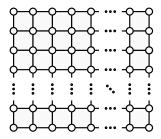


* c. Prove que se um grafo conexo pode ser obtido de alguma tabela boa, então ele é necessariamente uma árvore.

Questão 9. Prove que o grafo que é a imagem do nosso servidor de Discord (reproduzido abaixo) não pode ser colorido com 3 cores.



Questão 10. Um grafo *grade* é um grafo que pode ser desenhado em uma folha quadriculada, com as linhas da folha sendo as arestas e os cruzamentos das linhas os vértices:



* a. Mostre que todo grafo grade pode ser colorido com 2 cores.

- f * b. Mostre que se um grafo grade tem uma quantidade par de linhas ou de colunas, então ele é Hamiltoniano³.
- * c. Prove que se um grafo G qualquer pode ser colorido com 2 cores e é Hamiltoniano, então G tem uma quantidade par de vértices. Conclua a recíproca do item anterior: se um grafo grade é Hamiltoniano, então ele tem uma quantidade par de linhas ou de colunas.

³Lembrete: um grafo é *Hamiltoniano* se ele tem um ciclo gerador (i.e., existe um passeio fechado que passa por todos os vértices do grafo, e cuja única repetição de vértices é o primeiro com o último).