Lógica e Computabilidade 2024.1

Hugo Nobrega

Lista de Exercícios Extra

As entregas podem ser feitas em duplas, mas lembre-se que não poderá haver repetição de duplas em listas diferentes!

Entregue todas as questões marcadas com * até o fim do período:

20 de julho às 23:59

Questão 1. Diga se cada uma das linguagens abaixo é decidível (i.e., reconhecida por alguma máquina de Turing que sempre para) ou não, e prove sua resposta.

- * a. PASSOS := $\{c \in \{0,1\}^* \mid c \text{ codifica alguma máquina } M$, alguma entrada x para M e algum $n \in \mathbb{N}$, tais que M para em no máximo n passos quando executada com entrada x}
- * b. FINITO := $\{c \in \{0,1\}^* \mid c \text{ codifica máquina } M \text{ tal que } M \text{ aceita apenas uma quantidade finita de possíveis entradas}\}$
- **c.** Equivalentes := $\{c \in \{0,1\}^* \mid c \text{ codifica máquinas } M \in N \text{ que aceitam exatamente as mesmas entradas}\}$
- Questão 2. Seja $f: (\{0,1\}^*)^n \to \{0,1\}^*$ uma função n-ária parcial (i.e., uma função cujas saídas são sempre elementos de $\{0,1\}^*$ e cujos argumentos de entrada são n elementos de $\{0,1\}^*$, para algum n > 0, mas não necessariamente todas as n-uplas desse tipo são entradas aceitas). Dizemos que uma máquina M computa f se:
 - M tem como alfabeto de entrada $\{0,1,\#\}$;
- M tem pelo menos 2 fitas: uma fita de entrada e uma fita de saída, mais alguma quantidade finita (talvez zero) de fitas de rascunho;
- ullet no início de qualquer execução de M, todas as fitas exceto a de entrada estão vazias:
- quando $(c_0, \ldots, c_{n-1}) \in (\{0,1\}^*)^n$ é uma entrada possível para f, então M chega a um estado terminal quando executada com $c_0 \# c_1 \# \cdots \# c_{n-1}$ inicialmente na fita de entrada;
- quando $(c_0, \ldots, c_{n-1}) \in (\{0,1\}^*)^n$ é uma entrada possível para f, e M é executada com $c_0 \# c_1 \# \cdots \# c_{n-1}$ inicialmente na fita de entrada, então quando M chega ao seu estado terminal, o conteúdo da fita de saída é exatamente $f(c_0, \ldots, c_{n-1})$.

Note: quando $(c_0, \ldots, c_{n-1}) \in (\{0,1\}^*)^n$ não é uma entrada possível para f e M é executada com (c_0, \ldots, c_{n-1}) inicialmente na fita de entrada, nada afirmamos sobre o comportamento de M (não importa o que acontece nesse caso)! Além disso, a máquina pode usar no seu alfabeto de fita quaisquer outros símbolos além de 0,1,#,B ("blank", símbolo representando o vazio).

Prove que as funções a seguir são computáveis:

- * a. "Soma em base unária": $f(1^x, 1^y) = 1^{x+y}$. Aqui, f só tem como entradas pares de palavras sem ocorrências de 0.
- **b.** "Dobro em base unária": $f(1^x) = 1^{2x}$. Aqui, f só tem como entradas palavras sem ocorrências de 0.
- c. "Sucessor em base binária": f(c) é o binário que representa o sucessor do número natural cuja representação binária é c. Aqui, f tem como entrada qualquer c não-vazia.
- **d.** "Dobro em base binária": f(c) é o binário que representa o dobro do número natural cuja representação binária é c. Aqui, f tem como entrada qualquer c não-vazia.
- * e. "Fatorial em base unária": $f(1^n) = 1^{n!}$, sendo n! o fatorial de n. Aqui, f só tem como entradas palavras sem ocorrências de 0.
- *Questão 3. Dê exemplo de função parcial $f: (\{0,1\}^*)^n \to \{0,1\}^*$ que não seja computável, para algum $n \in \mathbb{N}$ (e prove que ela não é computável).

Questão 4 (Busy Beaver, o "castor ocupado"). É fato (e você não precisa provar!) que para cada $n \in \mathbb{N}$, existe uma quantidade finita de máquinas de Turing M satisfazendo:

- M tem exatamente n estados $al\'{e}m$ do seu estado terminal;
- *M* tem apenas 1 fita;
- M tem alfabeto de entrada \varnothing (vazio) e de fita $\{1, B\}$;
- quando executada com sua fita vazia (i.e., com B em todas as células),

M sempre chega ao estado terminal após um número finito de passos.

Assim, para cada $n \in \mathbb{N}$, há uma máquina com essas propriedades que deixa uma quantidade máxima de 1s escrita na fita ao parar (não necessariamente todos juntos); chamamos de número de Busy Beaver de n, denotado BB(n), essa quantidade (algumas fontes usam a notação $\Sigma(n)$ para o que estamos denotando por BB(n)). Até hoje só se conhecem os valores exatos de BB(n) para $n \le 4$. Por exemplo, BB(3) = 6, BB(4) = 13, $BB(5) \ge 4098$, e BB(6) certamente não caberia nessa página: ele é maior do que o número

 $10 \uparrow\uparrow 15 := 10$ elevado a (10 elevado a (10 elevado a (... elevado a 10))) com 15 números 10 aparecendo na expressão!

- a. Encontre (e prove que estão corretos) os valores de BB(0) e BB(1).
- * **b.** Prove que $BB(2) \ge 4$.