Lógica e Computabilidade 2024-2

Hugo Nobrega

Lista de Exercícios 3+4

As entregas podem ser feitas em duplas, mas lembre-se que não poderá haver repetição de duplas em listas diferentes!

Entregue todas as questões marcadas com * até

13/12 às 20:00

Questão 1. Considere uma assinatura com dois símbolos para relações: P (unário) e R (binário). Prove ou refute o que é afirmado em cada item abaixo. Lembrete: nossos modelos sempre têm universos não vazios.

- **a.** $P(x) \models P(x)$
- **b.** $P(x) \models P(y)$
- **c.** $P(x) \models \forall x P(x)$
- **d.** $\forall x P(x) \vDash P(x)$
- **e.** $\forall x P(x) \vDash \exists x P(x)$
- **f.** $\exists x P(x) \vDash \forall x P(x)$
- **g.** $\forall x \,\exists y \,(xRy) \vDash \exists x \,\forall y \,(xRy)$
- * h. $\exists x \, \forall y \, (xRy) \vDash \forall x \, \exists y \, (xRy)$
- i. $\vDash \exists x (P(x) \rightarrow \forall y (P(y)))$
- **j.** $\varphi \vDash \forall x \varphi$
- * k. Se x não ocorre livre em φ , então $\varphi \vDash \forall x \varphi$
- 1. $\vDash \varphi$ se, e somente se, $\vDash \forall x \varphi$

Questão 2. Chamamos de *modelagem* o processo de formalizar (simbolizar) frases ou argumentos da linguagem natural para a LPO usando alguma assinatura apropriada. Deve-se indicar a correspondência entre os componentes da frase de linguagem natural e os símbolos da linguagem formal.

Por exemplo, para a frase "eu nunca como manga e bebo leite no mesmo dia", poderíamos ter:

Lingugem natural	Simbólico	
eu como manga no dia x	M(x)	
eu bebo leite no dia x	L(x)	

também estipulando que as variáveis x, y, z, \ldots correspondem a dias.

De acordo com essa correspondência, a frase dada cima pode ser modelada por

$$\forall x \neg (M(x) \land L(x)).$$

Cada frase pode ser modelada de diversas formas diferentes.

Dê modelagens para cada frase abaixo.

a. "Ninguém gosta de todo mundo", usando

Linguagem natural Simbólico
$$x$$
 gosta de y $G(x, y)$

* b. "Toda pessoa que tem um filho deveria ser carinhosa com ele", usando

Linguagem natural	Simbólico
x é pai de y	P(x,y)
x deveria ser carinhoso com y	C(x,y)

c. "Você consegue enganar algumas pessoas em alguns momentos, mas não consegue enganar todas as pessoas em todos os momentos", usando

Linguagem natural	Simbólico
x é uma pessoa	P(x)
x é um momento	M(x)
você consegue enganar x em y	E(x,y)

d. "Nem toda fruta é gostosa, algumas são, mas nenhuma fruta cítrica é", usando

Linguagem natural	Simbólico
x é gostosa	G(x)
x é cítrica	C(x)

Questão 3. Em cada item abaixo, defina uma assinatura e encontre uma sentença φ dessa assinatura com a propriedade desejada. Lembre-se de que você tem liberdade de colocar os símbolos que quiser na assinatura, podendo então usar φ para fazê-los "se comportarem" de alguma forma desejada em cada modelo.

Por exemplo, para "os modelos de φ têm exatamente 1 elemento", poderíamos ter uma assinatura vazia e fazer φ ser $\forall x \, \forall y \, (x=y)$.

a. Para um dado $k \ge 1$ fixo: os modelos de φ são grafos (direcionados¹) k-coloríveis².

 $^{^1{\}rm Aqui},\ grafos\ direcionados$ são compostos por um conjunto não-vazio de vértices e uma relação binária sobre eles. Permitimos laços.

 $^{^2}$ Um grafo direcionado é k-colorível se existe um forma de colorir seus vértices usando no máximo k cores, de forma que vértices distintos vizinhos recebam cores distintas.

b. Os modelos de φ são torneios (grafos direcionados, sem laços, tais que entre qualquer par de vértices distintos existe exatamente uma aresta direcionada)

* c. Os modelos de φ são grafos direcionados acíclicos (DAGs).

Você pode usar o seguinte teorema que nós não provamos: um grafo direcionado é acíclico sse possui uma ordenação topológica, que é uma ordenação de seus vértices de maneira que, para toda aresta direcionada $u \to v$, temos que u vem antes de v na ordenação.

d. Os modelos de φ são cografos (definição dada na Lista 1).

Você pode usar o seguinte teorema que nós não provamos: todo grafo que não possui P_4 como subgrafo induzido é um cografo.

e. Os modelos de φ são grupos abelianos.

Questão 4. Sejam \mathcal{A} uma assinatura e $\$_0$, $\$_1$ estruturas para \mathcal{A} . Dizemos que $\$_0$ é uma subestrutura de $\$_1$ se

• o domínio $D(\$_0)$ de $\$_0$ é um subconjunto do domínio $D(\$_1)$ de $\$_1$, i.e.,

$$D(\$_0) \subseteq D(\$_1)$$

• para cada símbolo para constante c de A, temos

$$c^{\$_0} = c^{\$_1}$$

• para cada símbolo para operação n-ária op de \mathcal{A} e cada $d_0, \ldots, d_{n-1} \in D(\$_0)$, temos

$$\operatorname{op}^{\$_0}(d_0, \dots, d_{n-1}) = \operatorname{op}^{\$_1}(d_0, \dots, d_{n-1})$$

• para cada símbolo para relação n-ária R de \mathcal{A} e cada $d_0, \ldots, d_{n-1} \in D(\$_0)$, temos

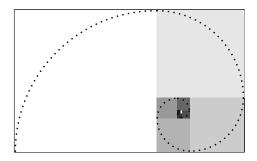
$$R^{\$_0}(d_0,\ldots,d_{n-1})$$
 é verdadeira \iff $R^{\$_1}(d_0,\ldots,d_{n-1})$ é verdadeira

Suponha que $\$_0$ seja subsestrutura de $\$_1$ e seja φ uma fórmula da LPO na assinatura \mathcal{A} , sem ocorrências de quantificadores, e tal que $\exists x \varphi$ é uma sentença.

Prove que se $\$_0 \models \exists x \varphi$ então $\$_1 \models \exists x \varphi$, mas que a recíproca não é necessariamente verdadeira.

Questão 5. Seja \mathcal{A} uma assinatura com um símbolo para constante u, com dois símbolos para operações binárias \oplus , \odot e um símbolo para relação binária \triangleleft . Seja $\$_{\mathbb{R}}$ a estrutura para essa assinatura que tem o conjunto dos reais \mathbb{R} como domínio e que interpreta u como 1, as operações \oplus , \odot respectivamente como adição e multiplicação, e a relação \triangleleft como "estritamente menor que".

a. A equação $x^2=x+1$ tem duas soluções reais; a maior delas é um número chamado razão áurea. Esse número é famoso pois, por exemplo, a sua n-ésima potência se aproxima do n-ésimo número de Fibonacci conforme $n\to\infty$, e também por supostamente ser "agradável" para os olhos: a razão áurea é a proporção do retângulo do qual, se retirarmos do "canto" do retângulo um quadrado de lado igual ao menor lado do retângulo, o retângulo restante tem a mesma proporção do original:



Escreva uma fórmula da assinatura $\mathcal A$ que defina a razão áurea em $\$_{\mathbb R}.$

- * b. Prove que todo número inteiro é definível em \mathbb{R} . Dica: não se preocupe em fazer uma definição "eficiente" ou "esperta"!
- * c. Um número racional é um número que pode ser escrito como uma fração com numerador e denominador inteiros.

Prove que todo racional é definível em $\$_{\mathbb{R}}$.

* d. <u>Prove</u> que *qualquer* raiz³ de polinômio com coeficientes racionais é definível em $\$_{\mathbb{R}}$.

Dica: primeiro mostre que a maior raiz de um dado polinômio com coeficientes racionais é definível, depois que a segunda maior raiz também é definível, etc.

*Questão 6. Prove que $\varphi, \psi \vdash \beta$, onde

$$\begin{split} \varphi &:= \forall x \; [(F(x) \land G(x)) \to H(x)] \quad \to \quad \exists x \; [F(x) \land (\neg G(x))] \\ \psi &:= \forall x \; [F(x) \to G(x)] \quad \lor \quad \forall x \; [F(x) \to H(x)] \\ \beta &:= \forall x \; [(F(x) \land H(x)) \to G(x)] \quad \to \quad \exists x \; [\langle F(x) \land G(x) \rangle \land \neg H(x)] \end{split}$$

Questão 7. Em cada item abaixo, escreva uma máquina de Turing que aceite a linguagem dada.

* a. $\{w \in \{x,y\}^*$; as quantidades de x's e de y's em w são iguais $\}$.

b.
$$\{w \in \{x, y, z\}^* ; \exists n \in \mathbb{N} . w = x^n y^n z^n \}$$

 $[\]overline{\ ^3Lembrete\colon}$ uma raiz de um polinômio p é um número r tal que p(r)=0.

* c. $\{w \in \Sigma^* ; w \text{ \'e um palíndromo}\}$ (um palíndromo \'e uma palavra que \'e igual ao seu próprio reverso, i.e., \'e uma palavra que \'e igual lida de frente pra trás ou de trás pra frente, como "socorram-me, subi no ônibus em Marrocos" se você ignorar acentos, pontuação, espaços e se as letras são maiúsculas/minúsculas).

*Questão 8. Considere a MT que tem estado inicial q_0 , estado terminal q_f , e a seguinte função de transição:

ao ler	no estado	escreva	vá para o estado	ande para
0	q_0	X	q_0	\rightarrow
1	q_0	X	q_1	\rightarrow
0	q_1	X	q_2	\rightarrow
1	q_1	X	q_1	\rightarrow
0	q_2	X	q_2	\rightarrow
1	q_2	X	q_3	\rightarrow
В	q_2	X	q_f	\rightarrow
0	q_3	X	q_0	\rightarrow
1	q_3	X	q_3	\rightarrow
В	q_3	X	q_f	\rightarrow

Descreva de maneira sucinta a linguagem $L \subseteq \{0,1\}^*$ que essa MT aceita.

*Questão 9. Considere a seguinte noção levemente alterada de Máquina de Turing:

Definição. Um enumerador é uma MT com 2 fitas, uma chamada fita de trabalho e a outra chamada fita de enumeração, e um estado especial chamado estado de enumeração (que não é terminal).

 $\underline{\mathbf{A}}$ execução de enumeração de um enumerador E começa com ambas as fitas vazias. Durante essa execução, sempre que E entra no estado de enumeração, se as células não-vazias da fita de enumeração formam um bloco contíguo, consideramos que a palavra formada por essas células foi enumerada.

Note que a execução de enumeração de E pode enumerar diversas, talvez infinitas, palavras (a execução pode, ou não, terminar).

Prove que uma linguagem $L \subseteq \{0,1\}^*$ é recursivamente enumerável (i.e., aceita por alguma MT comum) se, e somente se, existe um enumerador E tal que L é exatamente o conjunto das palavras enumeradas por E.

Questão 10. Diga se cada uma das linguagens abaixo é decidível (i.e., reconhecida por alguma máquina de Turing que sempre para) ou não, e prove sua resposta.

- * a. Passos := $\{c \in \{0,1\}^* \mid c \text{ codifica alguma máquina } M, \text{ alguma entrada } x \text{ para } M \text{ e algum } n \in \mathbb{N}, \text{ tais que } M \text{ para em no máximo } n \text{ passos quando executada com entrada } x\}$
- * b. Finito := $\{c \in \{0,1\}^* \mid c \text{ codifica máquina } M \text{ tal que } M \text{ aceita apenas uma quantidade finita de entradas}\}$
- c. Equivalentes := $\{c \in \{0,1\}^* \mid c \text{ codifica máquinas } M \in \mathbb{N} \text{ que aceitam exatamente as mesmas entradas}\}$
- Questão 11. Seja $f: (\{0,1\}^*)^n \to \{0,1\}^*$ uma função n-ária parcial (i.e., uma função cujas saídas são sempre elementos de $\{0,1\}^*$ e cujos argumentos de entrada são n elementos de $\{0,1\}^*$, para algum n > 0, mas não necessariamente todas as n-uplas desse tipo são entradas aceitas). Dizemos que uma máquina M computa f se:
 - M tem como alfabeto de entrada $\{0, 1, \#\}$;
- M tem pelo menos 2 fitas: uma fita de entrada e uma fita de saída, mais alguma quantidade finita (talvez zero) de fitas de rascunho;
- ullet no início de qualquer execução de M, todas as fitas exceto a de entrada estão vazias;
- quando $(c_0, \ldots, c_{n-1}) \in (\{0, 1\}^*)^n$ é uma entrada possível para f, então M chega a um estado terminal quando executada com $c_0 \# c_1 \# \cdots \# c_{n-1}$ inicialmente na fita de entrada;
- quando $(c_0, \ldots, c_{n-1}) \in (\{0,1\}^*)^n$ é uma entrada possível para f, e M é executada com $c_0 \# c_1 \# \cdots \# c_{n-1}$ inicialmente na fita de entrada, então quando M chega ao seu estado terminal, o conteúdo da fita de saída é exatamente $f(c_0, \ldots, c_{n-1})$.

Note: quando $(c_0, \ldots, c_{n-1}) \in (\{0, 1\}^*)^n$ não é uma entrada possível para $f \in M$ é executada com (c_0, \ldots, c_{n-1}) inicialmente na fita de entrada, nada afirmamos sobre o comportamento de M (não importa o que acontece nesse caso)! Além disso, a máquina pode usar no seu alfabeto de fita quaisquer outros símbolos além de 0, 1, #, B ("blank", símbolo representando o vazio).

Prove que as funções a seguir são computáveis:

- a. "Soma em base unária": $f(1^x, 1^y) = 1^{x+y}$. Aqui, f só tem como entradas pares de palavras sem ocorrências de 0.
- **b.** "Dobro em base unária": $f(1^x) = 1^{2x}$. Aqui, f só tem como entradas palavras sem ocorrências de 0.
- * c. "Sucessor em base binária": f(c) é o binário que representa o sucessor do número natural cuja representação binária é c. Aqui, f tem como entrada qualquer c não-vazia.
- **d.** "Dobro em base binária": f(c) é o binário que representa o dobro do número natural cuja representação binária é c. Aqui, f tem como entrada qualquer c não-vazia.

e. "Fatorial em base unária": $f(1^n) = 1^{n!}$, sendo n! o fatorial de n. Aqui, f só tem como entradas palavras sem ocorrências de 0.

Questão 12. Dê exemplo de função parcial $f:(\{0,1\}^*)^n \to \{0,1\}^*$ que não seja computável, para algum $n \in \mathbb{N}$ (e prove que ela não é computável).

Questão 13 (Busy Beaver, o "castor ocupado"). É fato (e você não precisa provar!) que para cada $n \in \mathbb{N}$, existe uma quantidade finita de máquinas de Turing M satisfazendo:

- M tem exatamente n estados $al\acute{e}m$ do seu estado terminal;
- M tem apenas 1 fita;
- M tem alfabeto de entrada \varnothing (vazio) e de fita $\{1, B\}$;
- quando executada com sua fita vazia (i.e., com B em todas as células), M sempre chega ao estado terminal após um número finito de passos.

Assim, para cada $n \in \mathbb{N}$, há uma máquina com essas propriedades que deixa uma quantidade máxima de 1s escrita na fita ao parar (não necessariamente todos juntos); chamamos de número de Busy Beaver de n, denotado $\mathsf{BB}(n)$, essa quantidade (algumas fontes usam a notação $\Sigma(n)$ para o que estamos denotando por $\mathsf{BB}(n)$). Até hoje só se conhecem os valores exatos de $\mathsf{BB}(n)$ para $n \leq 4$. Por exemplo, $\mathsf{BB}(3) = 6$, $\mathsf{BB}(4) = 13$, $\mathsf{BB}(5) \geqslant 4098$, e $\mathsf{BB}(6)$ certamente não caberia nessa página: ele é maior do que o número

 $10 \uparrow \uparrow 15 := 10$ elevado a (10 elevado a (10 elevado a (... elevado a 10)))

com 15 números 10 aparecendo na expressão!

- a. Encontre (e prove que estão corretos) os valores de BB(0) e BB(1).
- **b.** Prove que $BB(2) \geqslant 4$.